Zeitliche Ausdehnung und Unschärferelation eines Wellenpaketes

Für die Erzeugung eines räumlich lokalisierten Wellenpaketes können unendlich viele Wellen der Form exp{-i(ωt – kx)} in einem Wellenzahl-Intervall zwischen k0 – Δk/2 und k0+Δk/2 überlagert werden. Um ein zeitlich konzentriertes Wellenpaket zu erhalten, kann diese Überlagerung auch für Wellen in einem Frequenz-Intervall zwischen ω0Δω/2 und ω0 + Δω/2 durchgeführt werden und das Wellenpaket in der Form

    \[ \psi(x,t) = C(\omega_0)\int_{\omega_0 - \Delta\omega/2}^{\omega_0 + \Delta\omega/2} \exp\left\{-i(\omega t - kx)\right\}\dif{\omega} \]

dargestellt werden.

In der folgenden Betrachtung soll das Integral unter Verwendung einer Taylor-Entwicklung für k(ω) in der Umgebung von ω0 gelöst werden. Weiterhin wird gezeigt, dass die zeitliche Ausdehung des Wellenpaketes gegeben ist durch Δt = 4π/Δω und dass daraus die Unschärefelation ΔE·Δt=2h folgt. (mehr …)

Weiterlesen Zeitliche Ausdehnung und Unschärferelation eines Wellenpaketes